450 research outputs found

    The Ventriloquist Effect Results from Near-Optimal Bimodal Integration

    Get PDF

    The ventriloquist effect results from near-optimal bimodal integration

    Get PDF
    Results for the various unimodal location discriminations for naive observer L.M. are shown in Figure 1A. The curves plot the proportion of trials in which the second stimulus was seen to the left of the first, as a function of actual physical displacement. Following standard practice, the data were fitted with cumulative Gaussian functions free to vary in position and width: the position of the median (50 % leftward) is termed the point of subjective equality (PSE), and the width � 3Department of Psychology represents the estimate of localization accuracy (pre-University of Florence sumed to depend on internal noise). For all unimodal 50125 Florence conditions, the PSE was near 0�, but � varied consider-Italy ably. For visual stimuli, � was smallest (approximatel

    Measuring perception without introspection

    Get PDF
    Binocular rivalry, the perceptual alternation between incompatible monocular stimuli, is conventionally measured by asking the subject which percept is currently visible. This is problematic because the response is unverifiable, open to response bias, and falsely assumes that the perceptual experience is binary. We overcame these limitations in a new approach that does not require subjective reporting of perceptual state. A brief test stimulus was added to one eye's inducing stimulus at random times and contrasts. The test was presented at one of two spatial locations, the subject indicated which alternative had been shown, and the correctness of the response was recorded as a function of test contrast. Given the random timing of the test stimulus, it was sometimes delivered when the tested eye was dominant and, at other times, suppressed. Accordingly, the psychometric function recorded during rivalry should be a mixture of the dominance and suppression forms of the function. This was indeed the case: The probability of a correct response during rivalry was significantly less than that obtained with a binocularly congruent stimulus. The psychometric function during rivalry was well modeled as a weighted sum of the congruence curve with an assumed suppression curve. Optimal fitting provided estimates of both suppression depth and percept predominance that corresponded closely with estimates obtained with the conventional method. We have therefore characterized rivalry without the uncertainties introduced by the subject's perceptual report. This provides a model that may be applicable to the broader field of perceptual ambiguity

    Visual Rivalry Without Spatial Conflict

    Full text link

    Direct evidence for encoding of motion streaks in human visual cortex

    No full text
    Temporal integration in the visual system causes fast-moving objects to generate static, oriented traces ('motion streaks'), which could be used to help judge direction of motion. While human psychophysics and single-unit studies in non-human primates are consistent with this hypothesis, direct neural evidence from the human cortex is still lacking. First, we provide psychophysical evidence that faster and slower motions are processed by distinct neural mechanisms: faster motion raised human perceptual thresholds for static orientations parallel to the direction of motion, whereas slower motion raised thresholds for orthogonal orientations. We then used functional magnetic resonance imaging to measure brain activity while human observers viewed either fast ('streaky') or slow random dot stimuli moving in different directions, or corresponding static-oriented stimuli. We found that local spatial patterns of brain activity in early retinotopic visual cortex reliably distinguished between static orientations. Critically, a multivariate pattern classifier trained on brain activity evoked by these static stimuli could then successfully distinguish the direction of fast ('streaky') but not slow motion. Thus, signals encoding static-oriented streak information are present in human early visual cortex when viewing fast motion. These experiments show that motion streaks are present in the human visual system for faster motion.This work was supported by the Wellcome Trust (G.R., D.S.S.), the European Union ‘Mindbridge’ project (B.B.), the Australian Federation of Graduate Women Tempe Mann Scholarship (D.A.), the University of Sydney Campbell Perry Travel Fellowship (D.A.) and the Brain Research Trust (C.K.)

    Reducing bias in auditory duration reproduction by integrating the reproduced signal

    Get PDF
    Duration estimation is known to be far from veridical and to differ for sensory estimates and motor reproduction. To investigate how these differential estimates are integrated for estimating or reproducing a duration and to examine sensorimotor biases in duration comparison and reproduction tasks, we compared estimation biases and variances among three different duration estimation tasks: perceptual comparison, motor reproduction, and auditory reproduction (i.e. a combined perceptual-motor task). We found consistent overestimation in both motor and perceptual-motor auditory reproduction tasks, and the least overestimation in the comparison task. More interestingly, compared to pure motor reproduction, the overestimation bias was reduced in the auditory reproduction task, due to the additional reproduced auditory signal. We further manipulated the signal-to-noise ratio (SNR) in the feedback/comparison tones to examine the changes in estimation biases and variances. Considering perceptual and motor biases as two independent components, we applied the reliability-based model, which successfully predicted the biases in auditory reproduction. Our findings thus provide behavioral evidence of how the brain combines motor and perceptual information together to reduce duration estimation biases and improve estimation reliability

    Prestimulus α/β power in temporal-order judgments: individuals differ in direction of modulation but show consistency over auditory and visual tasks

    Get PDF
    The processing of incoming sensory information can be differentially affected by varying levels of α-power in the electroencephalogram (EEG). A prominent hypothesis is that relatively low prestimulus α-power is associated with improved perceptual performance. However, there are studies in the literature that do not fit easily into this picture, and the reasons for this are poorly understood and rarely discussed. To evaluate the robustness of previous findings and to better understand the overall mixed results, we used a spatial TOJ task in which we presented auditory and visual stimulus pairs in random order while recording EEG. For veridical and non-veridical TOJs, we calculated the power spectral density (PSD) for 3 frequencies (5 Hz steps: 10, 15, and 20 Hz). We found on the group level: (1) Veridical auditory TOJs, relative to non-veridical, were associated with higher β-band (20 Hz) power over central electrodes. (2) Veridical visual TOJs showed higher β-band (10, 15 Hz) power over parieto-occipital electrodes (3) Electrode site interacted with TOJ condition in the β-band: For auditory TOJs, PSD over central electrodes was higher for veridical than non-veridical and over parieto-occipital electrodes was lower for veridical than non-veridical trials, while the latter pattern was reversed for visual TOJs. While our group-level result showed a clear direction of prestimulus modulation, the individual-level modulation pattern was variable and included activations opposite to the group mean. Interestingly, our results at the individual-level mirror the situation in the literature, where reports of group-level prestimulus modulation were found in either direction. Because the direction of individual activation of electrodes over auditory brain regions and parieto-occipital electrodes was always negatively correlated in the respective TOJ conditions, this activation opposite to the group mean cannot be easily dismissed as noise. The consistency of the individual-level data cautions against premature generalization of group-effects and suggests different strategies that participants initially adopted and then consistently followed. We discuss our results in light of probabilistic information processing and complex system properties, and suggest that a general description of brain activity must account for variability in modulation directions at both the group and individual levels

    Combining eye and hand in search is suboptimal

    Get PDF
    When performing everyday tasks, we often move our eyes and hand together: we look where we are reaching in order to better guide the hand. This coordinated pattern with the eye leading the hand is presumably optimal behaviour. But eyes and hands can move to different locations if they are involved in different tasks. To find out whether this leads to optimal performance, we studied the combination of visual and haptic search. We asked ten participants to perform a combined visual and haptic search for a target that was present in both modalities and compared their search times to those on visual only and haptic only search tasks. Without distractors, search times were faster for visual search than for haptic search. With many visual distractors, search times were longer for visual than for haptic search. For the combined search, performance was poorer than the optimal strategy whereby each modality searched a different part of the display. The results are consistent with several alternative accounts, for instance with vision and touch searching independently at the same time
    corecore